Statistical Learning of Multi-view Face Detection

نویسندگان

  • Stan Z. Li
  • Long Zhu
  • ZhenQiu Zhang
  • Andrew Blake
  • HongJiang Zhang
  • Harry Shum
چکیده

A new boosting algorithm, called FloatBoost, is proposed to overcome the monotonicity problem of the sequential AdaBoost learning. AdaBoost [1, 2] is a sequential forward search procedure using the greedy selection strategy. The premise oÿered by the sequential procedure can be broken-down when the monotonicity assumption, i.e. that when adding a new feature to the current set, the value of the performance criterion does not decrease, is violated. FloatBoost incorporates the idea of Floating Search [3] into AdaBoost to solve the non-monotonicity problem encountered in the sequential search of AdaBoost. We then present a system which learns to detect multi-view faces using FloatBoost. The system uses a coarse-to-þne, simple-to-complex architecture called detector-pyramid. FloatBoost learns the component detectors in the pyramid and yields similar or higher classiþcation accuracy than AdaBoost with a smaller number of weak classiþers. This work leads to the þrst real-time multi-view face detection system in the world. It runs at 200 ms per image of size 320x240 pixels on a Pentium-III CPU of 700 MHz. A live demo will be shown at the conference.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-View Face Detection in Open Environments using Gabor Features and Neural Networks

Multi-view face detection in open environments is a challenging task, due to the wide variations in illumination, face appearances and occlusion. In this paper, a robust method for multi-view face detection in open environments, using a combination of Gabor features and neural networks, is presented. Firstly, the effect of changing the Gabor filter parameters (orientation, frequency, standard d...

متن کامل

Robust Multi-view Face Detection Using Error Correcting Output Codes

This paper presents a novel method to solve multi-view face detection problem by Error Correcting Output Codes (ECOC). The motivation is that face patterns can be divided into separated classes across views, and ECOC multi-class method can improve the robustness of multi-view face detection compared with the view-based methods because of its inherent error-tolerant ability. One key issue with E...

متن کامل

Multi-View Face Recognition with Min-Max Modular Support Vector Machines

As a result of statistical learning theory, support vector machines (SVMs)[23] are effective classifiers for the classification problems. SVMs have been successfully applied to various pattern classification problems, such as handwritten digit recognition, text categorization and face detection, due to their powerful learning ability and good generalization ability. However, SVMs require to sol...

متن کامل

A Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning

In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...

متن کامل

Multi-view face and eye detection using discriminant features

Multi-view face detection plays an important role in many applications. This paper presents a statistical learning method to extract features and construct classifiers for multi-view face detection. Specifically, a recursive nonparametric discriminant analysis (RNDA) method is presented. The RNDA relaxes Gaussian assumptions of Fisher discriminant analysis (FDA), and it can handle more general ...

متن کامل

Winner-Take-All Multiple Category Boosting for Multi-view Face Detection

“Divide and conquer” has been a common practice to address complex learning tasks such as multi-view object detection. The positive examples are divided into multiple subcategories for training subcategory classifiers individually. However, the subcategory labeling process, either through manual labeling or through clustering, is suboptimal for the overall classification task. In this paper, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002